Jumat, 28 Mei 2010

Pengkondisian Udara (AC) (3)

Setelah mengulas tantangan kontemporer yang dihadapi oleh teknologi refrigerasi/pengkondisian udara serta beberapa alternatif sistem yang telah dikembangkan untuk menghadapi tantangan tersebut, bagian ke-3 dari seri tulisan tentang refrigerasi ini mengulas perkembangan teknologi di bidang refrigeran (fluida kerja mesin refrigerasi) dan teknologi mesin refrigerasi itu sendiri.

Perkembangan Teknologi di Bidang Refrigeran

Refrigeran adalah fluida kerja yang bersirkulasi dalam siklus refrigerasi. Refrigeran merupakan komponen terpenting siklus refrigerasi karena dialah yang menimbulkan efek pendinginan dan pemanasan pada mesin refrigerasi. Seperti telah dijelaskan pada Bagian 1, masalah kontemporer yang menghadang refrigeran adalah munculnya lubang ozon dan pemanasan global.

ASHRAE (2005) mendefinisikan refrigeran sebagai fluida kerja di dalam mesin refrigerasi, pengkondisian udara, dan sistem pompa kalor. Refrigeran menyerap panas dari satu lokasi dan membuangnya ke lokasi yang lain, biasanya melalui mekanisme evaporasi dan kondensasi. Calm (2002) membagi perkembangan refrigeran dalam 3 periode: Periode pertama, 1830-an hingga 1930-an, dengan kriteria refrigeran "apa pun yang bekerja di dalam mesin refrigerasi". Refrigeran yang digunakan dalam periode ini adalah ether, CO2, NH3, SO2, hidrokarbon, H2O, CCl4, CHCs. Periode ke-dua, 1930-an hingga 1990-an menggunakan kriteria refrigeran: aman dan tahan lama (durable). Refrigeran pada periode ini adalah CFCs (Chloro Fluoro Carbons), HCFCs (Hydro Chloro Fluoro Carbons), HFCs (Hydro Fluoro Carbons), NH3, H2O. Periode ke-tiga, setelah 1990-an, dengan kriteria refrigeran "ramah lingkungan". Refrigeran pada periode ini adalah HCFCs, NH3, HFCs, H2O, CO2.

Perkembangan mutakhir di bidang refrigeran utamanya didorong oleh dua masalah lingkungan, yakni lubang ozon dan pemanasan global. Sifat merusak ozon yang dimiliki oleh refrigeran utama yang digunakan pada periode ke-dua, yakni CFCs, dikemukakan oleh Molina dan Rowland (1974) yang kemudian didukung oleh data pengukuran lapangan oleh Farman dkk. (1985). Setelah keberadaan lubang ozon di lapisan atmosfer diverifikasi secara saintifik, perjanjian internasional untuk mengatur dan melarang penggunaan zat-zat perusak ozon disepakati pada 1987 yang terkenal dengan sebutan Protokol Montreal. CFCs dan HCFCs merupakan dua refrigeran utama yang dijadwalkan untuk dihapuskan masing-masing pada tahun 1996 dan 2030 untuk negara-negara maju (United Nation Environment Programme, 2000). Sedangkan untuk negara-negara berkembang, kedua refrigeran utama tersebut masing-masing dijadwalkan untuk dihapus (phased-out) pada tahun 2010 (CFCs) dan 2040 (HCFCs) (Powell, 2002). Pada tahun 1997, Protokol Kyoto mengatur pembatasan dan pengurangan gas-gas penyebab rumah kaca, termasuk HFCs (United Nation Framework Convention on Climate Change, 2005).
Powell (2002) menerangkan bebeapa syarat yang harus dimiliki oleh refrigeran pengganti, yakni:

1. Memiliki sifat-sifat termodinamika yang berdekatan dengan refrigeran yang hendak digantikannya, utamanya pada tekanan maksimum operasi refrigeran baru yang diharapkan tidak terlalu jauh berbeda dibandingkan dengan tekanan refrigeran lama yang ber-klorin.
2. Tidak mudah terbakar.
3. Tidak beracun.
4. Bisa bercampur (miscible) dengan pelumas yang umum digunakan dalam mesin refrigerasi.
5. Setiap refrigeran CFC hendaknya digantikan oleh satu jenis refrigeran ramah lingkungan.

Setelah periode CFCs, R22 (HCFC) merupakan refrigeran yang paling banyak digunakan di dalam mesin refrigerasi dan pengkondisian udara. Saat ini beberapa perusahaan pembuat mesin-mesin refrigerasi masih menggunakan refrigeran R22 dalam produk-produk mereka. Meski refrigeran ini, termasuk juga refrigeran jenis HCFCs lainnya, dijadwalkan untuk dihapuskan pada tahun 2030 (untuk negara maju), namun beberapa negara Eropa telah mencanangkan jadwal yang lebih progresif, misalnya Swedia telah melarang penggunaan R22 dan HCFCs lainnya pada mesin refrigerasi baru sejak tahun 1998, sedangkan Denmark dan Jerman mengijinkan penggunaan HCFCs pada mesin-mesin baru hanya hingga 31 Desember 1999 (Kruse, 2000).

Protokol Montreal memaksa para peneliti dan industri refrigerasi membuat refrigeran sintetis baru, HFCs (Hydro Fluoro Carbons) untuk menggantikan refrigeran lama yang ber-klorin yang dituduh menjadi penyebab rusaknya lapisan ozon. Weatherhead dan Andersen (2006) mengemukakan bahwa sejak 8 tahun terakhir, penipisan kolom lapisan ozon tidak terjadi lagi. Kedua peneliti ini meyakini akan terjadinya pemulihan lapisan ozon. Meski demikian, keduanya tidak secara jelas merujuk turunnya penggunaan zat perusak ozon sebagai penyebab pulihnya lapisan ozon. Powell (2002) menyebutkan bahwa adanya kerjasama yang sangat baik antara produser refrigeran dan perusahaan pengguna refrigeran telah memungkinkan terjadinya transisi mulus dari era penggunaan CFCs secara besar-besaran di 1986 hingga penghapusan dan penggantiannya dengan R134a di tahun 1996. Banyak kalangan menyebutkan bahwa Protokol Montreal adalah salah satu perjanjian internasional di bidang lingkungan yang paling berhasil diterapkan.

Saat ini, HCFCs (yang pada dasarnya merupakan pengganti transisional untuk CFCs) telah memiliki 2 kandidat pengganti, yakni R410A (campuran dengan sifat mendekati zeotrop) dan R407C (campuran azeotrop) (Kruse, 2000). Hidrokarbon Propana (R290) juga berpotensi menjadi pengganti R22 (Kruse, 2000). R407C merupakan campuran antara R32/125/132a dengan komposisi 23/25/52, sedangkan R410A adalah campuran R32/125 dengan komposisi 50/50 (ASHRAE, 2005). Saat ini, beberapa perusahaan terkemuka di bidang refrigerasi dan pengkonsian udara telah menggunakan R410A dalam produk mereka.

Jika Protokol Montreal dan Kyoto dilaksanakan secara penuh dan konsisten, maka secara umum pada saat ini belum ada pilihan refrigeran komersial selain refrigeran alami. Meskipun perlu dicatat bahwa baru-baru ini terdapat produsen refrigeran yang mengklaim keberhasilannya membuat refrigeran yang tidak merusak ozon dan tidak menimbulkan pemanasan global (ASHRAE, 2006). Beberapa refrigeran alami yang sudah digunakan pada mesin refrigerasi adalah: amonia (NH3), hidrokarbon (HC), karbondioksida (CO2), air, dan udara (Riffat dkk., 1997). Kata "alami" menekankan keberadaan zat-zat tersebut yang berasal dari sumber biologis atapun geologis; meskipun saat ini beberapa produk refrigeran alami masih didapatkan dari sumber daya alam yang tidak terbarukan, misalnya hidrokarbon yang didapatkan dari oil-cracking, serta amonia dan CO2 yang didapatkan dari gas alam (Powell, 2002).

Penggunaan karbondioksida, air, dan udara pada refrigerator komersial masih memerlukan riset yang mendalam, sedangkan penggunaan amonia dan hidrokarbon, meskipun sudah cukup banyak dilakukan, masih memiliki peluang riset yang cukup banyak (Riffat dkk., 1997). Amonia bersifat racun (toxic) dan cukup mudah terbakar, sedangkan hidrokarbon termasuk dalam zat yang sangat mudah terbakar; oleh karena itu refrigeran tersebut secara umum sulit digunakan pada sistem ekspansi langsung. Sistem refrigerasi tak-langsung bisa digunakan untuk mengatasi kelemahan kedua refrigeran tersebut. Beberapa peneliti berusaha menekan tingkat keterbakaran refrigeran hidrokarbon dengan cara mencampurkannya bersama refrigeran lain yang tak mudah terbakar (Pasek dkk., 2006; Sekhar dkk., 2004; Dlugogorsky dkk., 2002). Granryd (2001) menekankan bahwa pada dasarnya sudah tersedia teknologi untuk meningkatkan keamanan pada sistem refrigerasi yang menggunakan refrigeran hidrokarbon, namun cara yang ekonomis untuk membuat sistem tersebut aman dan terbukti dapat digunakan dalam skala luas masih perlu dikembangkan lebih lanjut.

Teknologi Refrigerasi Alternatif

Munculnya beberapa permasalahan pada refrigerasi siklus kompresi uap dalam dekade belakangan ini membuat beberapa peneliti berusaha memunculkan sistem refrigerasi alternatif yang tidak mengandung permasalahan serupa. Teknologi alternatif tersebut diantaranya adalah refrigerasi sistem absorpsi, adsorpsi padatan (solid adsorption), dan efek magnetokalorik. Sistem absorpsi dan adsorpsi padatan tidak menggunakan refrigeran yang merusak ozon dan menimbulkan pemanasan global, serta bisa memanfaatkan panas matahari ataupun panas buangan; sedangkan refrigerasi sistem efek magnetokalorik sama sekali tidak menggunakan refrigeran primer.

Refrigerasi Siklus Absorpsi

Refrigerasi absorpsi merupakan siklus yang digerakkan oleh energi termal. Berbeda dengan sistem refrigerasi konvensional, energi mekanik yang diperlukan oleh refrigerasi absorpsi sangat kecil. Diagram refrigerasi absorpsi efek tunggal dapat dilihat pada Gambar 4 berikut ini:

Gambar 1 Diagram siklus refrigerasi absorpsi efek tunggal

Pada Gambar 1, QA adalah perpindahan panas dari absorber, WPump kerja yang diperlukan pompa, QG adalah perpindahan panas yang diperlukan oleh generator, QC adalah perpindahan panas dari kondenser, dan QE adalah panas yang diserap oleh evaporator. Penukar kalor yang terdapat di dalam siklus absorpsi berfungsi untuk meningkatkan temperatur larutan sebelum memasuki generator, sehingga bisa menghemat energi.

Seperti halnya siklus refrigerasi kompresi uap, efek pendinginan pada siklus absorpsi juga terjadi pada sisi evaporator. Untuk menggantikan kompresor seperti yang digunakan di dalam siklus kompresi uap, digunakan tiga komponen di dalam siklus absorpsi; yakni absorber, pompa, dan generator. Absorber berfungsi untuk menyerap uap refrigeran ke dalam absorben, sehingga keduanya bercampur menjadi larutan. Karena reaksi di dalam absorber adalah eksotermik (mengeluarkan panas), maka perlu dilakukan proses pembuangan panas dari absorber. Tanpa dilakukannya proses pembuangan panas, maka kelarutan (solubility) uap refrigeran ke dalam absorben akan rendah. Selanjutnya, larutan tersebut dipompa ke generator.

Dalam perjalanan menuju generator, larutan dilewatkan di dalam penukar kalor untuk meningkatkan temperatur (preheating). Daya pompa yang diperlukan sangat kecil, sehingga dalam perhitungan COP siklus absorpsi, daya ini biasanya diabaikan. Di dalam generator, larutan dipanaskan hingga terjadi pemisahan refrigeran dari larutan. Selanjutnya, uap refrigeran tersebut akan memasuki kondensor. Proses selanjutnya tidak berbeda dengan siklus kompresi uap, yakni kondensasi, penuruan tekanan (melalui mekanisme penghambat aliran - flow restrictor), dan evaporasi.

Dua keuntungan utama penggunaan siklus absorpsi adalah: (1) Siklus ini tidak menggunakan refrigeran yang merusak lapisan ozon dan menimbulkan pemanasan global, dan (2) Siklus ini bisa menggunakan panas buangan, sehingga sangat cocok digunakan dalam siklus kombinasi bersama dengan pembangkitan listrik dan panas/termal. Siklus kombinasi ini sangat berpotensi menghemat energi. Sistem pemanas dan pendingin di Shinjuku, Jepang, diklaim oleh operatornya (Tokyo Gas) bisa menghasilkan penghematan energi pendinginan sebesar 20% (Tokyo Gas, 2002).

Performansi sistem ini bisa didefiniskan dengan cara yang sama seperti halnya dalam siklus kompresi uap, yakni:
(3)
Namun karena daya pompa siklus ini umumnya sangat kecil dibandingkan dengan komponen yang lain, maka WPump seringkali dihilangkan dari Persamaan (3). Dalam aplikasinya, performa (COP) siklus absorpsi masih lebih rendah bila dibandingkan dengan siklus kompresi uap. Dalam artikel reviewnya, Shrikhirin (2001) menjelaskan beberapa teknik yang bisa digunakan untuk meningkatkan prestasi siklus absorpsi.

Holmberg dan Berntsson (1990) menerangkan beberapa kriteria yang perlu dipenuhi oleh fluida kerja (campuran antara refrigeran dan absorben), yakni:

1. Perbedaan titik didih antara refrigeran dan larutan pada tekanan yang sama (boiling elevation) haruslah sebesar mungkin.
2. Refrigeran perlu memiliki panas penguapan yang tinggi dan konsentrasi yang tinggi di dalam absorben untuk menekan laju sirkulasi larutan diantara absorber dan generator per-satuan kapasitas pendinginan.
3. Memiliki sifat-sifat transport, seperti viskositas, konduktivitas termal, dan koefisien difusi, yang baik sehingga dapat menghasilkan perpindahan panas dan massa yang juga baik.
4. Baik refrigeran dan absorbennya harus bersifat non-korosif, ramah lingkungan, dan murah.

Kriteria lain untuk fluida kerja sistem absorpsi serupa dengan kriteria untuk refrigeran siklus kompresi uap, seperti stabil secara kimiawi, tidak beracun, tidak mudah terbakar, dan tidak mudah meledak. Hingga saat ini, fluida kerja yang paling banyak digunakan di dalam sistem refrigerasi absorpsi adalah Air/NH3 dan LiBr/Air (Srikhirin dkk., 2001).

Refrigerasi Adsorpsi Padatan (solid adsorption)

Efek pendinginan pada siklus solid adsorption menggunakan prinsip yang sama dengan sistem refrigerasi lainnya: bahwa proses evaporasi memerlukan suplai energi (menyerap energi). Proses adsorpsi melibatkan pemisahan suatu zat dari cairan dan pengakumulasiannya pada permukaan sebuah zat padat. Zat yang menguap dari fasa cair disebut sebagai adsorbat, sedangkan zat padat yang menyerap adsorbat disebut sebagai adsorben. Molekul-molekul yang diserap oleh adsorben bisa dilepaskan kembali dengan cara memanaskan adsorben; dengan demikian proses ini bersifat reversibel. Terdapat dua macam adsorben, yakni hydrophilic seperti gel silika, zeolit dan alumina aktif atau alumina berpori; dan hydrophobic seperti karbon aktif, polimer dan silikat (Sumathy dkk., 2003). Adsorben hydrophilic memiliki kemampuan ikat yang tinggi dengan zat yang bersifat polar (seperti air), sedangkan adsorben hydrophobic dengan zat yang bersifat non-polar (seperti minyak).

Gambar 2 Diagram Clapeyron untuk siklus adsorpsi ideal

Siklus adsorpsi dasar bisa dilihat pada Gambar 5. Siklus ideal dimulai dari titik A: adsorben berada pada temperatur rendah, TA, dan tekanan rendah, PE (tekanan evaporasi). A - B menunjukkan pemanasan adsorben bersamaan dengan adsorbat. Pada saat ini, wadah adsorben (kolektor) dihubungkan dengan kondensor. Pemanasan lanjut pada adsorben dari B ke D menyebabkan sebagian adsorbat mengalami desorpsi dan selanjutnya uapnya terkondensasi di kondensor (titik C). Pada saat adsorben mencapai temperatur maksimum, TD, proses desorpsi berhenti. Selanjutnya cairan adsorbat dikirimkan ke evaporator dari C ke E; kemudian kolektor ditutup dan mendingin. Penurunan temperatur dari D ke F menyebabkan penurunan tekanan dari PC ke PE. Setelah kolektor dihubungkan dengan evaporator; evaporasi dan adsorpsi terjadi pada saat adsorben didinginkan dari temperatur F ke A. Efek pendinginan muncul pada saat terjadinya evaporasi adsorbat.

Dibandingkan dengan siklus kompresi uap, prestasi siklus adsorpsi jauh lebih kecil. Sumathy dkk. (2003) menjelaskan beberapa modifikasi yang perlu dilakukan pada siklus adsorpsi untuk meningkatkan prestasi siklus tersebut. COP tertinggi siklus adsorpsi yang didata oleh Sumathy dkk. (2003) adalah 1,06. Beberapa peneliti telah menyelidiki aplikasi siklus adsorpsi di berbagai bidang, seperti pengkondisian udara di dalam kabin masinis (Lu dkk., 2004; Wang dkk., 2006a), refrigerator tenaga surya untuk gedung (Lemmini dan Errougani, 2005), pendingin air (Liu dkk., 2005), dan pembuat es (ice maker) untuk kapal nelayan (Wang dkk., 2006b).

Refrigerasi Efek Magnetokalorik

Efek magnetokalorik, yang merupakan sifat intrinsik seluruh material magnetik, menyebabkan material yang bersifat magnetik akan membuang panas dan tingkat entropi magnetiknya turun pada saat dikenai medan magnet secara isotermal. Efek yang berkebalikan akan terjadi manakala medan magnet dihilangkan. Dengan demikian, efek magnetokalorik ini bisa digunakan untuk mendinginkan suatu zat. Prinsip ini telah digunakan dalam refrigerasi kriogenik sejak tahun 1930-an (Yu dkk., 2003). Refrigerasi magnetik dipandang sebagai teknologi hijau (green technology) yang memiliki potensi untuk menggantikan siklus konvensional kompresi uap. Efisiensi refrigerasi magnetik bisa mencapai 30 - 60% terhadap siklus Carnot, sedangkan siklus kompresi uap hanya mencapai 5 - 10% terhadap siklus Carnot (Yu dkk., 2003). Oleh karena itu, refrigerasi magnetik diperkirakan memiliki potensi yang bagus di masa mendatang.

Siklus dasar refrigerasi magnetik adalah siklus Carnot magnetik, siklus Stirling magnetik, siklus Ericcson magnetik, dan siklus Brayton magnetik. Mekanisme kerja siklus refrigerasi magnetik, misalnya siklus Ericcson magnetik, dijelaskan di bawah ini (lihat juga Gambar 6).

1. Proses magnetisasi isothermal (A-B). Pada saat terjadi kenaikan medan magnet (dari H0 ke H1), panas dipindahkan dari refrigeran magnetik ke fluida regenerator untuk menjaga refrigeran dalam keadaan isotermal. Note: yang dimaksud dengan refrigeran adalah material magnetik itu sendiri.
2. Proses pendinginan pada medan-konstan (B-C). Pada keadaan medan magnet konstan (H1), panas dipindahkan dari refrigeran magnetik ke fluida regenerator.
3. Proses demagnetisasi isotermal (C-D). Pada saat medan magnet diturunkan (dari H1 ke H0), panas diserap dari fluida regenerator ke refrigeran magnetik untuk menjaga kondisi isotermal pada refrigeran.
4. Proses pemanasan pada medan-konstan (D-A). Temperatur akhir refrigeran magnetik kembali ke kondisi semula (A).


Gambar 3 Diagram siklus Ericcson magnetik. Pada gambar tersebut, S dan T masing-masing adalah entropi dan temperatur.

Beberapa peneliti mengeksplorasi kemungkinan penggunaan refrigerasi magnetik sebagai pengganti sistem refrigerasi konvensional. Pada 1976, di Lewis Research Center of American National Aeronautics and Space Administration, Brown menggunakan logam tanah jarang (rare-earth metal) gadolinium (Gd) sebagai refrigeran magnetik untuk refrigerasi pada temperatur ruang (Yu dkk., 2003). Dengan menambahkan berbagai variasi silika dan germanium ke latis (lattice) kristal gadolinium, Vitalij Pecharsky dan Karl Gschneidner dari the Ames Laboratory di Iowa State University menemukan jenis material baru yang bisa mendinginkan dua hingga enam kali lebih banyak dalam siklus magnetik tunggal, yang berarti bahwa mesin refrigerasi ini bisa menggunakan medan magnet yang lebih lemah atau material yang lebih kecil (Glanz, 1998).

Dengan memadukan refrigeran magnetik Gd5Ge2Si2 dan sejumlah kecil besi, Provenzano dkk. (2004) melaporkan bahwa mereka bisa mengurangi kehilangan histerisis (yang menyebabkan refrigeran magnetik kurang efisien) hingga 90%. Selain menggunakan paduan berbasiskan gadolinium, Tegus dkk. (2002) menggunakan refrigeran magnetik berbasiskan logam transisi, MnFeP0.45,As0.55, untuk refrigerasi pada temperatur ruang dengan hasil refrigerasi yang secara signifikan lebih besar dibandingkan dengan Gd5Ge2Si2. Namun demikian, saat ini pengembangan refrigerasi magnetik pada temperatur ruang masih belum matang. Yu dkk. (2003) menekankan bahwa kesulitan utama dalam pengembangan refrigerasi magnetik adalah:

1. Diperlukannya material magnetik dengan efek magnetokalorik yang besar,
2. Diperlukannya medan magnet yang kuat, dan
3. Diperlukannya sifat regenerasi dan perpindahan panas yang istimewa.
Komponen Komponen Pokok Refrigerasi
Operasi refrigerasi butuh suatu mesin yang disebut dengan refrigerator. Refrigerator merupakan kumpulan serangkaian peralatan, seperti:
1. Kompressor.
2. Kondensor.
3. Akumulator.
4. Mesin ekspansi / katup ekspansi.
5. Evaporator.

1. Kompressor
Kompressor adalah alat yang digunakan untuk menghisap uap refrigerant dan mengkompresinya sehingga tekanan uap refrigerant naik sampai ke tekanan yang diperlukan untuk pengembunan (kondensasi) uap regrigerant di dalam kondensor.

Kompressor ini digerakkan oleh sumber tenaga dari mesin penggerak, seperti:
• Motor listrik
• Motor bakar
• Diesel
• Mesin uap
• Turbin gas
Pada kompressor, berlaku persamaan neraca energi;

Karena kompressi, fluida kerja (uap refrigerant) terkompressi menjadi naik entalpinya (H2 > H ), sehingga dapat dikatakan energi dari sumber digunakan untuk menaikkan entalpi fluida kerja.

2. Kondensor
Kondensor merupakan alat penukar panas yang berguna untuk mendinginkan uap refrigerant dari kompressor agar dapat mengembun menjadi cairan. Pada saat pengembunan ini, refrigerant mengeluarkan sejumlah kalori (panas pengembunan) yang mana panas ini diterima oleh media pendingin di dalam kondensor.

3. Akumulator
Merupakan alat yang berguna untuk mengumpulkan cairan refrigerant yang berasal dari kondensor. Dengan adanya alat ini akan memudahkan pengaturan stock dari total refrigerant.

4. Mesin Ekspansi atau Katup Ekspansi
Mesin atau katup ekspansi ini berfungsi untuk menurunkan tekanan dari cairan refrigerant sebelum masuk ke evaporator, sehingga akan memudahkan refrigerant menguap di evaporator dan menyerap kalori (panas) dari media yang didinginkan.

5. Evaporator
Juga merupakan alat penukar panas. Refrigerant cair dengan tekanan rendah setelah proses ekspansi, diuapkan dalam alat ini. Untuk penguapan refrigerant cair ini tentunya diperlukan sejumlah kalori, yang mana diambil dari media yang akan didinginkan oleh sistem refrigerasi. Misalnya pada mesin Air Conditioning (AC), media yang didinginkan adalah udara di dalam ruangan (kamar). Begitu pula pada kulkas, media yang didinginkan adalah ruangan dalam kulkas dan segala sesuatu yang berada dalam kulkas. Uap refrigerant yang terbentuk di evaporator langsung dihisap oleh kompressor, demikian seterusnya mengulangi langkah pertama tadi sehingga membentuk suatu siklus, yang disebut dengan siklus refrigerasi.
Sistim Refrigerasi Kompresi Uap
Deskripsi

Siklus refrigerasi kompresi mengambil keuntungan dari kenyataan bahwa fluida yang bertekanan tinggi pada suhu tertentu cenderung menjadi lebih dingin jika dibiarkan mengembang. Jika perubahan tekanan cukup tinggi, maka gas yang ditekan akan menjadi lebih panas daripada sumber dingin diluar (contoh udara diluar) dan gas yang mengembang akan menjadi lebih dingin daripada suhu dingin yang dikehendaki. Dalam kasus ini, fluida digunakan untuk mendinginkan lingkungan bersuhu rendah dan membuang panas ke lingkungan yang bersuhu tinggi.

Siklus refrigerasi kompresi uap memiliki dua keuntungan. Pertama, sejumlah besar energi panas diperlukan untuk merubah cairan menjadi uap, dan oleh karena itu banyak panas yang dapat dibuang dari ruang yang disejukkan. Kedua, sifat-sifat isothermal penguapan membolehkan pengambilan panas tanpa menaikan suhu fluida kerja ke suhu berapapun didinginkan. Hal ini berarti bahwa laju perpindahan panas menjadi tinggi, sebab semakin dekat suhu fluida kerja mendekati suhu sekitarnya akan semakin rendah laju perpindahan panasnya.

Siklus refrigerasi ditunjukkan dalam Gambar 1 dan 2 dan dapat dibagi menjadi tahapan-tahapan berikut:
1 – 2. Cairan refrigeran dalam evaporator menyerap panas dari sekitarnya, biasanya udara, air atau cairan proses lain. Selama proses ini cairan merubah bentuknya dari cair menjadi gas, dan pada keluaran evaporator gas ini diberi pemanasan berlebih/ superheated gas.
2 – 3. Uap yang diberi panas berlebih masuk menuju kompresor dimana tekanannya dinaikkan. Suhu juga akan meningkat, sebab bagian energi yang menuju proses kompresi dipindahkan ke refrigeran.
3 – 4. Superheated gas bertekanan tinggi lewat dari kompresor menuju kondenser. Bagian awal proses refrigerasi (3-3a) menurunkan panas superheated gas sebelum gas ini dikembalikan menjadi bentuk cairan (3a-3b). Refrigerasi untuk proses ini biasanya dicapai dengan menggunakan udara atau air. Penurunan suhu lebih lanjut terjadi pada pekerjaan pipa dan penerima cairan (3b - 4), sehingga cairan refrigeran didinginkan ke tingkat lebih rendah ketika cairan ini menuju alat ekspansi.
4 - 1 Cairan yang sudah didinginkan dan bertekanan tinggi melintas melalui peralatan ekspansi, yang mana akan mengurangi tekanan dan mengendalikan aliran menuju

Gambar 1. Gambaran skematis siklus refrigerasi kompresi uap

Gambar 2. Gambaran skematis siklus refrigerasi termasuk perubahan tekanannya
(Biro Efisiensi Energi, 2004)

Kondenser harus mampu membuang panas gabungan yang masuk evaporator dan kondenser.
Dengan kata lain: (1 - 2) + (2 - 3) harus sama dengan (3 - 4). Melalui alat ekspansi tidak terdapat panas yang hilang maupun yang diperoleh.

Jenis-jenis refrigeran yang digunakan dalam sistim kompresi uap

Terdapat berbagai jenis refrigeran yang digunakan dalam sistim kompresi uap. Suhu refrigerasi yang dibutuhkan sangat menentukan dalam pemilihan fluida. Refrigeran yang umum digunakan adalah yang termasuk kedalam keluarga chlorinated fluorocarbons (CFCs, disebut juga Freons): R-11, R-12, R-21, R-22 dan R-502.

Sifat-sifat bahan-refrigeran dan kinerja bahan refrigeran tersebut diberikan dalam 2 Tabel dibawah:

Pemilihan refrigeran dan suhu pendingin dan beban yang diperlukan menentukan pemilihan kompresor, juga perancangan kondenser, evaporator, dan alat pembantu lainnya. Faktor tambahan seperti kemudahan dalam perawatan, persyaratan fisik ruang dan ketersediaan utilitas untuk peralatan pembantu (air, daya, dll.) juga mempengaruhi pemilihan komponen.

Kamis, 20 Mei 2010

1. Reparasi Handphone

Alat dan Bahan yang diperlukan untuk reparasi Hp adalah sebagai berikut :

Gambar 1. Peralatan Reparasi HP

1. 1. Buku Skematik Hp

Buku skematik hp ini sangat diperlukan dalam melakukan reparasi untuk membaca jalur komponen hp. Fungsi: Untuk membaca Jalur Hp yang putus sehingga dapat dilakukan teknik jamper.

1. 2. Solder Uap (Blower)

Suatu alat yang wajib dimiliki oleh seorang teknisi Hp.

Alat ini juga sering disebut solder Uap karena memiliki Heater(panas) dan Air (udara) yang dapat kita atur panas tekanan udaranya. Fungsi: – Untuk mencairkan timah - Untuk mencabut/mengangkat dan mematri komponen(IC)

1. 3. DC Power Supply

Sumber tegangan yang Voltagenya bisa kita ukur sesuai dengan kebutuhan Hp, alat ini juga sering digunakan untuk mengecek kondisi Hp masih hidup atau tidak. Fungsi: – Untuk menganalisa tegangan (V) dan Ampere (A) atau yang sering disebut dengan analisa power supply. - Untuk mengecek kerusakan pada ponsel

1. 4. Solder Manual

Solder yang digunakan tidak terlalu panas dengan daya 25 watt. Fungsi: Untuk mematri komponen

1. 5. Multitester

Alat ini sangat penting untuk dimiliki oleh seorang teknisi ponsel karena memiliki banyak manfaat untuk mengetahui masih bagus atau tidak. Fungsi: – Untuk mengukur komponen - Untuk mengecek hubungan antar komponen (Jalur) - Untuk Mengecek Batteray

1. 6. BGA Plate

Suatu alat yang sering digunakan oleh teknisi untuk menjepit PCB Ponsel agar tidak bergerak pada saat pelepasan/pemasangan komponen, biasanya terbuat dari besi berani. Fungsi: Untuk menjepit PCB

1. 7. Timah Paste

IC yang sering dicabut akan menyebabkan kaki IC menjadi pendek/hilang, maka perlu untuk membuat kaki IC yang sering disebut dengan teknik pengecoran kaki IC. Fungsi: Mencetak ulang kaki IC

1. 8. Solder Paste

Terkadang yang sering kita pakai akan meninggalkan kotoran/bekas timah yang akan mengakibatkan solder tidak panas. Maka mata solder perlu dibersihkan dengan timah paste. Fungsi: Untuk membersihkan mata solder

1. 9. Cairan IPA (Tiner Inpala)

Cairan ini sering digunakan oleh teknisi untuk membersihkan PCB Ponsel. Fungsi: Untuk membersihkan PCB

1. 10. Kawat Jumper(Handsfree)

Kawat ini digunakan untuk menghubungkan jalur yang putus (Jumper) atau lebih terkenal dengan sebutan teknik jumper. Fungsi: Untuk menjumper jalur yang putus

1. 11. Tools kit

Separangkat obeng yang digunakan untuk membuka cassing ponsel terdiri dari :

* Obeng Variasi
* Tang Siemens
* Pinset lurus dan lengkung
* ”U” untuk membuka cassing 7450
* Obeng T6

1. 12. Timah 0,3

Timah yang digunkan untuk mematri komponen berukuran kecil sebesar 0,3 Fungsi: Untuk mematri komponen

1. 13. Songka Padat / Fluks

Bahan ini digunakan pada saat melepas komponen/IC, dioleskan pada body komponen yang hendak dicabut. Fungsi: mempercepat pencairan timah.

1. 14. Lampu Service

Lampu ini digunakan saat melakukan reparasi ponsel pada malam hari. Fungsi: Memberikan penerangan.

1. 15. Cetakan kaki IC

Alat ini digunakan untuk mencetak ulang kaki IC

1. 16. Pinset

Ada dua jenis pinset yang digunakan oleh teknisi ponsel yaitu pinset lengkung dan lurus. Fungsi: Untuk menjepit komponen pada saat hendak dilepas/dipatri.

Gambar 2. Contoh PCB HP (Nokia 6600)

Rabu, 05 Mei 2010

flaring tool

Genuine Imperial Eastman

tools set

Cutting tool Pipe cutting tool




flaring tools



flaring tool set

Deluxe kit

siklus

Siklus Rerigerant

Didalam sistim pendingin kompresi dalam keadaan standby ( diam ) gas refrigerant mengisi seluruh sistim yang terdiri atas kompresor, kondensor, katup ekspansi dan evaporator secara merata dan dengan tekanan yang relativ sama.

Ketika kompresor dihidupkan rerigrant yang berada di receiver maupun evaporator akan dihisap dan dialirkan /ditekan kedalam kondensor. Didalam kondensor gas refrigrant akan menjadi bertekanan dan bertemperatur tinggi, ketika kondensor bersentuhan dengan udara bebas yang bertemperatur kamar/ruang maka gas refrigerant akan turun suhunya dan berkondensasi sehingga perlahan lahan berubah menjadi cairan, ketika sampai diakhir kondensor gas refrigerant telah sepenuhnya menjadi cairan dengan tekanan yang masih tinggi.

Ketika cairan melalui katup ekspansi ( pipa kapiler ) cairan dengan temperature jenuh memasuki ruang evaporator yang luas dan bertekanan rendah maka serta merta akan memuai menjadi gas dan mendidih sehingga akan membutuhkan kalor laten, kalor ini diserap dari udara disekitar evaporator, shgingga terjadi penurunan suhu / disekitar evaporator, ketika sampai di akhir evaporator seluruh refrigerant telah menjadi gas dan terjadi sedikit kenaikan temperatur tetapi hal ini dapat diabaikan.

Refrigerant yang telah berubah menjadi gas yang bertemperatur dan bertekanan rendah ini dihisap oleh kompresor untuk selanjutnya ditekan/dialirkan kedalam kondensor.

Siklus ini akan terus berjalan selama kompresor dihidupkan. Refrigerant terus mengalir dengan perubahan tekanan dan temperature, hal inilah yang dimanfaatkan dalam pesawat pendingin, baik sebagai pendingin/pengawet makanan ( refrigerator ) maupun pedingin ruangan ( AC ).

11

Cara Pengisian Refrigerant Dalam Refrigeratror/ lemari pendingin

Ada dua cara pengisian yang lazim dilaksanakan para teknisi pendingin. Yang pertama dengan cara pengosongan sistim dengan menggunakan pompa vacum standar. Cara ini disamping lebih cepat juga hasil pemvacuman lebih sempurna.

Cara kedua dengan mengeluarkan udara dalam sistim dengan menggunakan kompresor dari mesin itu sendiri, cara ini lazim disebut cara vacum bodi. Cara ini makan waktu cukup lama dan sebenarnya kurang sempurna hasilnya, sebagian udara masih tersisa dalam sistim atau tidak dapat dikeluarkan seluruhnya.

PENGISIAN REFRIGERANT DENGAN MENGGUNAKAN POMPA VACUM.

22

LANGAKAH PENGISIAN SISTIM DENGAN VACUM PUMP

  1. Siapkan alat yang dibutuhkan misalnya
    • Manifold gauge
    • Tabung refrigerant
    • Pompa vacuum ( vacum pump )
    • Napel / pentil
    • Rol stopkontak
    • Clamp tester / tang amper

2. Langkah Kerja

· Pasang napel/pentil tambahan pada kompresor dari sistim yang akan diisi refrigerant.

· Pasang ketiga slang manifold pada tempatnya masing masing, selang biru pada sebelah kiri selang kuning pada saluran tengah dan merah pada bagian kanan (lihat gambar)

· Hubungkan slang biru pada napel tambahan pada kompresor

· Hubungkan selang kuning pada tabung refrigerant.

· Hubungkan selang merah pada napel pada pompa vacuum.

· Setelah yakin semuanya terpasang dengan benar dan rapat, buka kedua kran pada manifold gauge

Kran / Valve

Kran valve pada outdoor unit

Kran valve adalah sebuah alat yg dapat membuka tutup seperti kran air, bedanya adalah kran air dapat ditutup dan dibuka dengan tangan, kalau kran valve pada outdoor unit dibuka dan ditutupnya menggunakan kunci L.

kran valve berfungsi untuk mengunci freon didalam outdoor unit.
bila anda membeli ac split baru outdoor unitnya sudah terisi oleh freon.
jadi sewaktu ac split sudah selesai terpasang,
kran valve pada outdoor unit harus dibuka agar freon dapat bersikulasi didalam unit pendingin.

ac 1/2 pk, 3/4 pk dan 1 pk mempunyai kran valve yg berukuran 1/4 untuk pipa tekan(discharge) dan kran valve yg berukuran 3/8 untuk untuk pipa hisap(suction) dapat anda lihat pada gambar diatas.
semakin tinggi kapasitas pendinginan, semakin besar pula kran valve yg digunakan.
untuk membuka dan menutup kran valve, terlebih dahulu anda harus membuka mur penutup kran nepel dengan kunci inggris.
mur penutup kran nepel befungsi untuk menahan kebocoran freon, bila seal pada kran valve bocor.
untuk itu setelah anda membuka mur penutup kran nepel dan memasangnya kembali, usahakan mur penutup kran nepel dikencangkan kembali.
kerusakan pada kran valve biasanya adalah kebocoran disekitar kran valve dan bagian belakang kran valve yg berada didalam outdoor unit.
dapat diperbaiki dengan cara mengelasnya atau menggantinya dengan kran valve yg baru.

catatan: yg ditunjukan oleh tanda panah dalam gambar adalah pentil pengisian freon.

rumus mesin pendingin

Rumus perhitungan pendinginan

Jika anda tidak mengetahui berapa kapasitas pendinginan untuk ruangan/kamar tidur yang ingin anda pasangi ac, berikut ini saya berikan rumus perhitungan kapasitas pendinginan untuk ruangan/kamar tidur anda.


1 ton refrigerasi = 12.000 Btu / jam
1 ton refrigerasi = 3,51 kw pendingin
(12000 / 3414 = 3,51)
biasanya untuk 1 ton pendinginan, evaporator membutuhkan volume udara sekitar 400 cfm (cubic feet per minute)


Kapasitas pendinginan ac harus disesuaikan dengan ukuran ruangan yg ingin anda pasangi ac, rumusnya adalah : P X L X 500/800 = .....PK
Jika ruangan kamar tidur anda Panjangnya 4 meter dan lebarnya 3 meter, berarti 4 meter X meter x dengan 3500/800 = 0.75 PK, berarti ac yg harus anda pasang adalah 3/4 PK.
atau bisa juga anda gunakan rumus P X L X 500 BTU = Kapasitas ac yang anda butuhkan.
bisa juga dengan rumus 37 meter = 12.000 BTU
kode kapasitas pendinginan ac berbeda-beda pada tiap merk ac, merk national/panasonic menggunakan kode cs/cw 05 = 1/2 PK, 07 = 3/4 PK, 09 = 1 PK, 12 = 1.5 PK dan 18 = 2 PK.
sedangkan untuk merk Daikin FT 20 = 3/4 PK, FT 25 = 1 PK, FT 35 = 1.5 PK

untuk perhitungan yang lebih spesifik/heat load calculation, anda dapat menggunakan coolpack software.

cara kerja ac mobil

Prinsip kerja mesin pendingin semuanya sama, yg berbeda hanya alat spare-part dan freonnya saja, pada ac mobil menggunakan compressor yg digerakkan dengan sebuah vanbelt melalui putaran mesin.
compressor ac mobil menggunakan clutch/kopling untuk menggerakan piston didalam compressor, pipa pengeluarannya berbentuk drat luar dengan tulisan S untuk suction/hisap D untuk discharge/tekan.

coba anda perhatikan selang karet bernepel dari compressor drat D (discharge/tekan) pasti menuju pada condenser yg berada didepan radiator mobil anda, dari condenser disambungkan pada strainer yg mempunyai sight glass (kaca untuk melihat aliran freon) lalu dari strainer menuju Expansion valve (pengganti pipa kapiler) baru masuk kedalam evaporator dan kembali kepada compressor drat S (suction/hisap).

evaporator dan condensor pada ac mobil model sekarang terbuat dari almunium, jadi bila terjadi kebocoran anda bisa membeli yg baru atau memilih untuk dilas.
anda bisa mengelasnya di jalan wr buncit raya dekat kantor imigrasi jakarta selatan, ini anda lakukan bila kebocoran pada evaporator/condenser tidak terlalu banyak bocornya, soalnya biaya las dihitung perlubang.

hal-hal yg membuat ac mobil anda menjadi tidak dingin

1. Adanya kebocoran pada selang karet suction atau discharge.
bila anda ingin memperbaiki sendiri anda dapat memotong selang karet tepat ditempat yg terjadi kebocoran dengan pisau cutter.
masukan 2 buah klem baut yg ukurannya lebih dari selang karet ac mobil anda, lalu masukan pipa ac ukuran 5/8 panjang 10 cm kedalam selang karet yg anda potong tadi lalu kencangkan klem baut untuk menekan pipa 5/8 agar tidak terjadi kebocoran.
lakukan vakum dengan mesin vakum kemudian isi freon R134A atau R12, ditoko spare-part ac ada yg menjual freon R134A ukuran 3 ons, belilah 2 botol untuk ac mobil yg tidak doble blower.
tapi bila ac mobil anda doble blower belilah 3 atau 4 botol.
pentil pengisian freon pada compressor ac mobil sekarang berdrat dalam, tidak seperti comppressor ac mobil R12 berdrat luar yg langsung dapat dipasangkan selang manifold.
anda harus membeli alat tambahan agar selang manifold dapat terpasang pada compressor ac mobil R134A.

2. Tekanan yg dikeluarkan oleh comppressor ac mobil anda sudah lemah, mungkin klep tekan dan klep hisap yg berada dalam comppressor ada yg patah.
kalau compressor tekanannya sudah berkurang, saya sarankan anda menggantinya dengan yg baru.

3. Evaporator dan condenser tertutup oleh debu atau kotoran.
anda dapat merasakan desiran angin yg keluar dari blower ac mobil anda, bila udara yg keluar tidak beraturan berarti blower ac mobil anda harus dicuci dengan mesin steam.

4. Extra fan pada condenser tidak dapat berputar
chek apa ada aliran lstrik 12 volt dc pada kabel yg menuju extra fan.

5. Evapporator mengalami kebocoran.
untuk mengeceknya memang agak sulit karena anda harus membuka evaporator tersebut.

6. condenser mengalami kebocoran.
untuk mengeceknya anda siramkan air sabun pada sisi kanan dan kiri condensor tersebut, perhatikan apa ada gelembung udara yg keluar diantara tekukan U nya.
periksa juga sambungan nepel di compressor, strainer, condenser dan di evaporator, ini dilakukan bila freon masih tersisa dalam sistem ac mobil anda.

7. Chek thermostat apakah dapat menghubungkan aliran listrik.

ac mobil menggunakan switch pressure, jadi bila tidak ada tekanan freon dalam sistem ac mobil anda, compressor tak mau hidup walaupun switch ac anda geser keposisi on.
dan untuk mengecek apa freon dalam ac mobil anda berkurang atau tidak, anda dapat melihat pada sight glass yg berada pada strainer/drier.
bila anda melihat aliran freon ada berbusa berarti ada pengurangan freon tapi bila yg anda lihat seperti aliran air dan tidak berbusa berarti ac mobil anda berkondisi baik/tidak ada pengurangan freon.
cara kerja kulkas

Sistem kerja lemari es dimulai dari bagian kompresor sebagai jantung kulkas yang berfungsi sebagai tenaga penggerak. Pada saat dialiri listrik, motor kompresor akan berputar dan memberikan tekanan pada bahan pendingin. Bahan pendingin yang berwujud gas apabila diberi tekanan akan menjadi gas yang bertekanan dan bersuhu tinggi. Dengan wujud seperti itu, memungkinkan refrigerant mengalir menuju kondensor. Pada titik kondensasi, gas tersebut akan mengembun dan kembali menjadi wujud cair, Refrigerant cair bertekanan tinggi akan terdorong menuju pipa kapiler. Dengan begitu refrigerant akan naik ke evaporator akibat tekanan kapilaritas yang dimiliki oleh pipa kapiler. Saat berada di dalam evaporator, refrigerant cair akan menguap dan wujudnya kembali menjadi gas yang memiliki tekanan dan suhu yang sangat rendah. Akibatnya, udara yang terjebak di antara evaporator menjadi bersuhu rendah dan akhirnya terkondensasi menjadi wujud cair. Pada kondisi yang berulang memungkinkan udara tersebut membeku menjadi butiran-butiran es. Hal tersebut terjadi pada benda atau air yang sengaja diletakkan di dalam evaporator.

Kompresor

Kompresor merupakan bagian terpenting di dalam kulkas . Apabila di analogikan dengan tubuh manusia, kompresor sama dengan jantung yang berfungsi memompa darah ke seluruh tubuh begitu juga dengan kompresor. Kompresor berfungsi memompa bahan pendingin keseluruh bagian kulkas .

Kondensor

Kondensor adalah alat penukar kalor untuk mengubah wujud gas bahan pendingin pada suhu dan tekanan tinggi menjadi wujud cair. Jenis kondensor yang banyak digunakan pada teknologi kulkas saat ini adalah kondensor dengan pendingin udara. Yang digunakan pada sistem refrigrasi kulkas kecil maupun sedang. kondensor seperti ini memiliki bentuk yang sederhana dan tidak memerlukan perawatan khusus .saat lemari es bekerja kondensor akan terasa hangat bila dipegang.

Filter

Filter ( saringan ) berguna menyaring kotoran yang mungkin terbawa aliran bahan pendingin yang keluar setelah melakukan serkulasi agar tidak masuk kedalam konpresor dan pipa kapiler. Selain itu , bahan pendingan yang akan disalurkan pada proses berikutnya lebih bersih sehingga dapat menyerap kalor lebih maksimal.

Evaporator

Evaporator berfungsi menyerap panas dari benda yang di masukkan kedalam kulkas, kemudian evaporator menguapkan bahan pendingin untuk melawan panas dan mendinginkannya. Sesuai fungsinya evaporator adalah alat penguap bahan pendingin agar efektif dalam menyerap panas dan menguapkan bahan pendingin, evaporator di buat dari bahan logam anti karat, yaitu tembaga dan almunium.

Thermostat

Thermostat memiliki banyak sebutan antara lain temperatur kontrol dan cool control. Apapun sebutannya, thermostat berfungsi mengatur kerja kompresor secara otomatis bedasarkan batasan suhu pada setiap bagian kulkas. Bisa dikatakan, thermostat adalah saklar otomatis berdasarkan pengaturan suhu. Jika suhau evaperator sesuai dengan pengatur suhu thermostat, secara otomatis thermostat akan memutuskan listrik ke kompresor.

Heater

Hampir keseluruan kulkas nofrost dan sebagian kecil kulkas defrost dilengkapi dengan pemanas ( heater ). Pemanas berfungsi mencairkan bunga es yang terdapat di evapurator . selain itu pemanas dapat mencegah terjadinya penimbunan bunga es pada bagian rak es dan rak penyimpan buah di bawah rak es.

Fan motor

Fan motor atau kipas angin berguna untuk menghembuskan angin . pada kulkas ada dua jenis fan

1. fan motor evaporator
Berfungsi menghembuskan udara dingin dari evaporator keseluruh bagian rak ( rak es , sayur ,dan buah ).

2. fan motor kondensor
kipas angin ini diletakkan pada bagian bawah kulkas yang memiliki kondensor yang berukuran kecil yang berfungsi mengisap atau mendorong udara melalui kondensor dan kompresor . selain itu berfungsi mendinginkan kompresor.

Overload motor protector

Adalah komponen pengaman yang letaknya menyatu dengan terminal kompresor. Cara kerjanya serupa dengan sekering yang dapat menyambung dan memutus arus listrik. Alat ini dapat melindungi komponen kelistrikan dari kerusakan arus akibat arus yang dihasilkan kompresor melebihi arus acuan normal.

Bahan Pendingin (Refrigerant)

Refrigerant adalah zat yang mudah diubah wujudnya dari gas menjadi cair, ataupun sebaliknya. Jenis bahan pendingin sangat beragam. Setiap jenis bahan pendingin memiliki karakteristik yang berbeda.

Cara kerja sistem AC ruangan

Bagaimana cara kerja sistem AC sehingga mampu memberikan efek pendingin dalam ruangan Anda? AC alias Air Conditioner alias Pengkondision Udara merupakan seperangkat alat yang mampu mengkondisikan ruangan yang kita inginkan, terutama mengkondisikan ruangan menjadi lebih rendah suhunya dibanding suhu lingkungan sekitarnya. Seperangkat alat tersebut diantaranya kompresor, kondensor, orifice tube, evaporator, katup ekspansi, dan evaporator dengan penjelasan sebagai berikut :

Kompresor :

Kompresor adalah power unit dari sistem sebuah AC. Ketika AC dijalankan, kompresor mengubah fluida kerja/refrigent berupa gas dari yang bertekanan rendah menjadi gas yang bertekanan tinggi. Gas bertekanan tinggi kemudian diteruskan menuju kondensor.

Kondensor :

Kondensor adalah sebuah alat yang digunakan untuk mengubah/mendinginkan gas yang bertekanan tinggi berubah menjadi cairan yang bertekanan tinggi. Cairan lalu dialirkan ke orifice tube.

Orifice Tube :

di mana cairan bertekanan tinggi diturunkan tekanan dan suhunya menjadi cairan dingin bertekanan rendah. Dalam beberapa sistem, selain memasang sebuah orifice tube, dipasang juga katup ekspansi.

Katup ekspansi :

Katup ekspansi, merupakan komponen terpenting dari sistem. Ini dirancang untuk mengontrol aliran cairan pendingin melalui katup orifice yang merubah wujud cairan menjadi uap ketika zat pendingin meninggalkan katup pemuaian dan memasuki evaporator/pendingin

Evaporator/pendingin :

refrigent menyerap panas dalam ruangan melalui kumparan pendingin dan kipas evaporator meniupkan udara dingin ke dalam ruangan. Refrigent dalam evaporator mulai berubah kembali menjadi uap bertekanan rendah, tapi masih mengandung sedikit cairan. Campuran refrigent kemudian masuk ke akumulator / pengering. Ini juga dapat berlaku seperti mulut/orifice kedua bagi cairan yang berubah menjadi uap bertekanan rendah yang murni, sebelum melalui kompresor untuk memperoleh tekanan dan beredar dalam sistem lagi. Biasanya, evaporator dipasangi silikon yang berfungsi untuk menyerap kelembapan dari refrigent.

Jadi, cara kerja sistem AC dapat diuraikan sebagai berkut :

Sistem kerja AC

Kompresor yang ada pada sistem pendingin dipergunakan sebagai alat untuk memampatkan fluida kerja (refrigent), jadi refrigent yang masuk ke dalam kompresor dialirkan ke condenser yang kemudian dimampatkan di kondenser.

Di bagian kondenser ini refrigent yang dimampatkan akan berubah fase dari refrigent fase uap menjadi refrigent fase cair, maka refrigent mengeluarkan kalor yaitu kalor penguapan yang terkandung di dalam refrigent. Adapun besarnya kalor yang dilepaskan oleh kondenser adalah jumlahan dari energi kompresor yang diperlukan dan energi kalor yang diambil evaparator dari substansi yang akan didinginkan.

Pada kondensor tekanan refrigent yang berada dalam pipa-pipa kondenser relatif jauh lebih tinggi dibandingkan dengan tekanan refrigent yang berada pada pipi-pipa evaporator.

Setelah refrigent lewat kondenser dan melepaskan kalor penguapan dari fase uap ke fase cair maka refrigent dilewatkan melalui katup ekspansi, pada katup ekspansi ini refrigent tekanannya diturunkan sehingga refrigent berubah kondisi dari fase cair ke fase uap yang kemudian dialirkan ke evaporator, di dalam evaporator ini refrigent akan berubah keadaannya dari fase cair ke fase uap, perubahan fase ini disebabkan karena tekanan refrigent dibuat sedemikian
rupa sehingga refrigent setelah melewati katup ekspansi dan melalui evaporator tekanannya menjadi sangat turun.

Hal ini secara praktis dapat dilakukan dengan jalan diameter pipa yang ada dievaporator relatif lebih besar jika dibandingkan dengan diameter pipa yang ada pada kondenser.

Dengan adanya perubahan kondisi refrigent dari fase cair ke fase uap maka untuk merubahnya dari fase cair ke refrigent fase uap maka proses ini membutuhkan energi yaitu energi penguapan, dalam hal ini energi yang dipergunakan adalah energi yang berada di dalam substansi yang akan didinginkan.

Dengan diambilnya energi yang diambil dalam substansi yang akan didinginkan maka enthalpi [*] substansi yang akan didinginkan akan menjadi turun, dengan turunnya enthalpi maka temperatur dari substansi yang akan didinginkan akan menjadi turun. Proses ini akan berubah terus-menerus sampai terjadi pendinginan yang sesuai dengan keinginan.

Dengan adanya mesin pendingin listrik ini maka untuk mendinginkan atau menurunkan temperatur suatu substansi dapat dengan mudah dilakukan.

Perlu diketahui :

Kunci utama dari AC adalah refrigerant, yang umumnya adalah fluorocarbon [**], yang mengalir dalam sistem, menjadi cairan dan melepaskan panas saat dipompa (diberi tekanan), dan menjadi gas dan menyerap panas ketika tekanan dikurangi. Mekanisme berubahnya refrigerant menjadi cairan lalu gas dengan memberi atau mengurangi tekanan terbagi mejadi dua area: sebuah penyaring udara, kipas, dan cooling coil (kumparan pendingin) yang ada pada sisi ruangan dan sebuah kompresor (pompa), condenser coil (kumparan penukar panas), dan kipas pada jendela luar.

Udara panas dari ruangan melewati filter, menuju ke cooling coil yang berisi cairan refrigerant yang dingin, sehingga udara menjadi dingin, lalu melalui teralis/kisi-kisi kembali ke dalam ruangan. Pada kompresor, gas refrigerant dari cooling coil lalu dipanaskan dengan cara pengompresan. Pada condenser coil, refrigerant melepaskan panas dan menjadi cairan, yang tersirkulasi kembali ke cooling coil. Sebuah thermostat [***] mengontrol motor kompresor untuk mengatur suhu ruangan.

[*] Entalphi adalah istilah dalam termodinamika yang menyatakan jumlah energi internal dari suatu sistem termodinamika ditambah energi yang digunakan untuk melakukan kerja.

[**] Fluorocarbon adalah senyawa organik yang mengandung 1 atau lebih atom Fluorine. Lebih dari 100 fluorocarbon yang telah ditemukan. Kelompok Freon dari fluorocarbon terdiri dari Freon-11 (CCl3F) yang digunakan sebagai bahan aerosol, dan Freon-12 (CCl2F2), umumnya digunakan sebagai bahan refrigerant. Saat ini, freon dianggap sebagai salah satu penyebab lapisan Ozon Bumi menajdi lubang dan menyebabkan sinar UV masuk. Walaupun, hal tersebut belum terbukti sepenuhnya, produksi fluorocarbon mulai dikurangi.

[***] Thermostat pada AC beroperasi dengan menggunakan
lempeng bimetal yang peka terhadap perubahan suhu ruangan. Lempeng ini terbuat dari 2 metal yang memiliki koefisien pemuaian yang berbeda. Ketika temperatur naik, metal terluar memuai lebih dahulu, sehingga lempeng membengkok dan akhirnya menyentuh sirkuit listrik yang menyebabkan motor AC aktif/jalan.

Selasa, 04 Mei 2010


coba lihat ikan nya begitu cantik
dan ikan ini disebut ikan nemo,, atau ikan badut mengapa di sebut ikan badut karena warna nya dan bentuk nya macam badut lucu ikan ini tinggal di karang atau ubur-ubur yang lembut ,biasa nya ikan ini berada di perairan air laut yang dangkal,,seperti di pulau-pulau.lihat sangat bagus kan bentuk nya ?????

pulau biru(island blue park)

pulau kabung(pulau biru) disinilah aku tinggal pertama kali udara yang segar banyak ikan-ikan kecil yang cantik kehidupan yang sangat mantap di pulau ini banyak si kenangan -2 semasa kecil aku, di pulau ini .pulau ny sangat simple ya penduduk ny si mayoritas nelayan dan petani tapi di pulau ini udah modern meskipun tidak ada listrik.....?
saya kangen dengan pulau ini karena pulau ini banyak menyimpan kenangan ku semasa kecil dulu,,, pas dekat pohon kelapa yang berada di dkat pantai itulah dia tempat aku tinggal atau rumah yang sangat isimewa bagi ku....?

mesin pendingin






















Air conditioning systems are becoming more vital in ensuring the comfort of people at home and in the work place. Refrigeration systems are contributing to the storage and preservation of our precious food resources. We are especially finding a massive acceptance of these new systems in the warmer or tropical countries. This increases the importance of having qualified techni­cians who can install, service and repair this equipment.

Air Conditioning and Refrigeration systems have recently been undergoing a revolution in technology. Today’s systems are using new technology after the discovery that CFC refrigerants, such as R11 & R12, were harmful to the environment. There is an urgent need to train technicians for this new technology and to improve the servicing and recovery of CFCs on older systems.

Labtech Trainers follow the new technology as per the Montreal Protocol, which was sponsored by the United Nations, and are not harmful to the environment. Labtech trainers use the latest technology and are designed to give techni­cians the skills required to meet today’s challenges. Most of our training systems incorporate "Fault Insertion Systems" that allows both electrical and refrigerant flow faults. This provides an invaluable instruction device for troubleshooting & maintenance aspects of the equipment.

how many ac

how air conditioner
When the temperature outside begins to climb, many people seek the cool comfort of indoor ai­r conditioning. Like water towers and power lines, air conditioners are one of those things that we see every day but seldom pay much attention to.

Wouldn't it be nice to know how these indispensable machines work their magic?

Air conditioners come in various sizes, cooling capacities and prices. One type that we see all the time is the window air conditioner, an easy and economical way to cool a small area:

ac
People who live in suburban areas usually have a condenser unit in the backyard:­
ac

If you live in an apartment complex, you'll probably see multiple condensers for each dwelling:

ac

Most businesses and office buildings have condensing units on their roofs, and as you fly into any airport you notice that warehouses and malls may have 10 or 20 condensing units hidden on their roofs:

ac

At office complexes, you'll find large cooling towers that are connected to the air conditioning system:

ac

Even though each of these machines has a pretty distinct look, they all work on the same principles. In this article, we'll examine air conditioners -- from small to huge -- so you know more about what you're seeing. We'll also look at some new, energy-efficient cooling methods.

­

Air-conditioning Basics

­

Most people think that air conditioners lower the temperature in their homes simply by pumping cool air in. What's really happening is the warm air from your house is being removed and cycled back in as cooler air. This cycle continues until your thermostat reaches the desired temperature.

An air conditioner is basically a refrigerator without the insulated box. It uses the evaporation of a refrigerant, like Freon, to provide cooling. The mechanics of the Freon evaporation cycle are the same in a refrigerator as in an air conditioner. According to the Merriam-Webster Dictionary Online, the term Freon is generically "used for any of various nonflammable fluorocarbons used as refrigerants and as propellants for aerosols."

Diagram of a typical air conditioner
Diagram of a typical air conditioner.

This is how the evaporation cycle in an air conditioner works (See How Refrigerators Work for complete details on this cycle):

  1. The compressor compresses cool Freon gas, causing it to become hot, high-pressure Freon gas (red in the diagram above).
  2. This hot gas runs through a set of coils so it can dissipate its heat, and it condenses into a liquid.
  3. The Freon liquid runs through an expansion valve, and in the process it evaporates to become cold, low-pressure Freon gas (light blue in the diagram above).
  4. This cold gas runs through a set of coils that allow the gas to absorb heat and cool down the air inside the building.

Mixed in with the Freon is a small amount of lightweight oil. This oil lubricates the compressor.

Air conditioners help clean your home's air as well. Most indoor units have filters that catch dust, pollen, mold spores and other allergens as well as smoke and everyday dirt found in the air. Most air conditioners also function as dehumidifiers. They take excess water from the air and use it to help cool the unit before getting rid of the water through a hose to the outside. Other units use the condensed moisture to improve efficiency by routing the cooled water back into the system to be reused.

So this is the general concept involved in air conditioning. In the next section, we'll take a look at window and split-system units.

­

Window and Split-system AC Units

air conditioner

A window air conditioner unit implements a complete air conditioner in a small space. The units are made small enough to fit into a standard window frame. You close the window down on the unit, plug it in and turn it on to get cool air. If you take the cover off of an unplugged window unit, you'll find that it contains:

  • A compressor
  • An expansion valve
  • A hot coil (on the outside)
  • A chilled coil (on the inside)
  • Two fans
  • A control unit

The fans blow air over the coils to improve their ability to dissipate heat (to the outside air) and cold (to the room being cooled).

When you get into larger air-conditioning applications, its time to start looking at split-system units. A split-system air conditioner splits the hot side from the cold side of the system, as in the diagram below.

air conditioner

The cold side, consisting of the expansion valve and the cold coil, is generally placed into a furnace or some other air handler. The air handler blows air through the coil and routes the air throughout the building using a series of ducts. The hot side, known as the condensing unit, lives outside the building.

The unit consists of a long, spiral coil shaped like a cylinder. Inside the coil is a fan, to blow air through the coil, along with a weather-resistant compressor and some control logic. This approach has evolved over the years because it's low-cost, and also because it normally results in reduced noise inside the house (at the expense of increased noise outside the house). Other than the fact that the hot and cold sides are split apart and the capacity is higher (making the coils and compressor larger), there's no difference between a split-system and a window air conditioner.

In warehouses, large business offices, malls, big department stores and other sizeable buildings, the condensing unit normally lives on the roof and can be quite massive. Alternatively, there may be many smaller units on the roof, each attached inside to a small air handler that cools a specific zone in the building.

In larger buildings and particularly in multi-story buildings, the split-system approach begins to run into problems. Either running the pipe between the condenser and the air handler exceeds distance limitations (runs that are too long start to cause lubrication difficulties in the compressor), or the amount of duct work and the length of ducts becomes unmanageable. At this point, it's time to think about a chilled-water system.

Chilled-water and Cooling-tower AC Units

In a chilled-water system, the entire air conditioner lives on the roof or behind the building. It cools water to between 40 and 45 degrees Fahrenheit (4.4 and 7.2 degrees Celsius). This chilled water is then piped throughout the building and connected to air handlers as needed. There's no practical limit to the length of a chilled-water pipe if it's well-insulated.

ac

You can see in this diagram that the air conditioner (on the left) is completely standard. The heat exchanger lets the cold Freon chill the water that runs throughout the building.

In all of the systems described earlier, air is used to dissipate the heat from the outside coil. In large systems, the efficiency can be improved significantly by using a cooling tower. The cooling tower creates a stream of lower-temperature water. This water runs through a heat exchanger and cools the hot coils of the air conditioner unit. It costs more to buy the system initially, but the energy savings can be significant over time (especially in areas with low humidity), so the system pays for itself fairly quickly.

  1. Cooling towers come in all shapes and sizes. They all work on the same principle:
  2. A cooling tower blows air through a stream of water so that some of the water evaporates.
  3. Generally, the water trickles through a thick sheet of open plastic mesh.
  4. Air blows through the mesh at right angles to the water flow.
  5. The evaporation cools the stream of water.
  6. Because some of the water is lost to evaporation, the cooling tower constantly adds water to the system to make up the difference.
­
ac
Cooling Towers

The amount of cooling that you get from a cooling tower depends on the relative humidity of the air and the barometric pressure.

For example, assuming a 95-degree Fahrenheit (35-degree Celsius) day, barometric pressure of 29.92 inches (sea-level normal pressure) and 80-percent humidity, the temperature of the water in the cooling tower will drop about 6 degrees to 89 degrees Fahrenheit (3.36 degrees to 31.7 degrees Celsius). If the humidity is 50 percent, then the water temperature will drop perhaps 15 degrees to 80 degrees Fahrenheit (8.4 degrees to 26.7 degrees Celsius). And, if the humidity is 20 percent, then the water temperature will drop about 28 degrees to 67 degrees Fahrenheit (15.7 degrees to 19.4 degrees Celsius). Even small temperature drops can have a significant effect on energy consumption.

Whenever you walk behind a building and find a unit that has large quantities of water running through a thick sheet of plastic mesh, you will know you have found a cooling tower!

In many office complexes and college campuses, cooling towers and air conditioning equipment are centralized, and chilled water is routed to all of the buildings through miles of underground pipes.

In the next section, we'll look at how much all this cooling power costs.

BTU and EER

­­

Most air conditioners have their capacity rated in British thermal units (BTU). Generally speaking, a BTU is the amount of heat required to raise the temperature of one pound (0.45 kg) of water 1 degree Fahrenheit (0.56 degrees Celsius). Specifically, 1 BTU equals 1,055 joules. In heating and cooling terms, 1 "ton" equals 12,000 BTU.

A typical window air conditioner might be rated at 10,000 BTU. For comparison, a typical 2,000-square-foot (185.8 m2) house might have a 5-ton (60,000-BTU) air conditioning system, implying that you might need perhaps 30 BTU per square foot. (Keep in mind that these are rough estimates. To size an air conditioner for your specific needs, contact an HVAC contractor.)

The energy efficiency rating (EER) of an air conditioner is its BTU rating over its wattage. For example, if a 10,000-BTU air conditioner consumes 1,200 watts, its EER is 8.3 (10,000 BTU/1,200 watts). Obviously, you would like the EER to be as high as possible, but normally a higher EER is accompanied by a higher price.

Let's say that you have a choice between two 10,000-BTU units. One has an EER of 8.3 and consumes 1,200 watts, and the other has an EER of 10 and consumes 1,000 watts. Let's also say that the price difference is $100. To understand what the payback period is on the more expensive unit, you need to know approximately how many hours per year you will be operating the unit and How much a kilowatt-hour (kWh) costs in your area

Let's say that you plan to use the air conditioner in the summer (four months a year) and it will be operating about six hours a day. Let's also imagine that the cost in your area is $0.10/kWh. The difference in energy consumption between the two units is 200 watts, which means that every five hours the less expensive unit will consume 1 additional kWh (and therefore $0.10 more) than the more expensive unit.

Assuming that there are 30 days in a month, you find that during the summer you're operating the air conditioner:

4 mo. x 30 days/mo. x 6 hr/day = 720 hours

[(720 hrs x 200 watts) / (1000 watts/kW)] x $0.10/kWh = $14.40

The more expensive unit costs $100 more, which means that it will take about seven years for the more expensive unit to break even.

See Climate Magic for a great explanation of seasonal energy efficiency rating (SEER).

In the next section, we'll look at cutting these costs with some new, energy-efficient cooling systems.

­

Energy Efficient Cooling Systems

­

Passive Cooling
Some people go to the extreme and get rid of their AC units entirely. Passive cooling is the greenest of trends and a great way to save money. Passive cooling revolves around the concept of removing warm air from your home using the interaction between the house and its surroundings. There are several ways to block and remove heat, including shading through landscaping, using a dark exterior paint, installing a radiant barrier in the roof rafters and good old- fashioned insulation. Another way is through thermal siphoning, the process of removing heat through controlled airflow. Opening the lower windows on the breezy side of your house and the upper windows on the opposite side creates a vacuum that draws out the hot air. Ceiling fans and roof vents are other ways to direct heat out at low cost [source: Earth Easy].

Because of the rising costs of electricity and a growing trend to "go green," more people are turning to alternative cooling methods to spare their pocketbooks and the environment. Big businesses are even jumping on board in an effort to improve their public image and lower their overhead.

Ice cooling systems are one way that businesses are combating high electricity costs during the summer. Ice cooling is as simple as it sounds. Large tanks of water freeze into ice at night, when energy demands are lower. The next day, a system much like a conventional air conditioner pumps the cool air from the ice into the building. Ice cooling saves money, cuts pollution, eases the strain on the power grid and can be used alongside traditional systems. The downside of ice cooling is that the systems are expensive to install and require a lot of space. Even with the high startup costs, more than 3,000 systems are in use worldwide [source: CNN]. You can read more about ice cooling in Are Ice Blocks Better than Air Conditioning?

An ice cooling system is a great way to save money and conserve energy, but its price tag and space requirements limit it to large buildings. One way that homeowners can save on energy costs is by installing geo-thermal heating and cooling systems, also known as ground source heat pumps (GSHP). The Environmental Protection Agency recently named geo-thermal units "the most energy-efficient and environmentally sensitive of all space conditioning systems" [source: EPA].

Although it varies, at six feet underground the Earth's temperatures range from 45 to 75 degrees Fahrenheit. The basic principle behind geo-thermal cooling is to use this constant temperature as a heat source instead of generating heat with electricity.

The most common type of geo-thermal unit for homes is the closed-loop system. Polyethylene pipes are buried under the ground, either vertically like a well or horizontally in three- to six-foot trenches. They can also be buried under ponds. Water or an anti-freeze/water mixture is pumped through the pipes. During the winter, the fluid collects heat from the earth and carries it through the system and into the building. During the summer, the system reverses itself to cool the building by pulling heat from the building, carrying it through the system and placing it in the ground [source: Geo Heating].